Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(1): 61, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38110623

RESUMO

Climate change affects ecosystems in different ways. These effects are particularly worrying in the Neotropical region, where species are most vulnerable to these changes because they live closer to their thermal safety limits. Thus, establishing conservation priorities, particularly for the definition of protected areas (PAs), is a priority. However, some PA systems within the Neotropics are ineffective even under the present environmental conditions. Here, we test the effectiveness of a PA system, within an ecotone in northern Brazil, in protecting 24 endangered bird species under current and future (RCP8.5) climatic scenarios. We used species distribution modeling and dispersal corridor modeling to describe the priority areas for conservation of these species. Our results indicate that several threatened bird taxa are and will potentially be protected (i.e., occur within PAs). Nonetheless, the amount of protected area is insufficient to maintain the species in the ecotone. Moreover, most taxa will probably present drastic declines in their range sizes; some are even predicted to go globally extinct soon. Thus, we highlight the location of a potentially effective system of dispersal corridors that connects PAs in the ecotone. We reinforce the need to implement public policies and raise public awareness to maintain PAs and mitigate anthropogenic effects within them, corridors, and adjacent areas, aiming to conserve the richness and diversity of these already threatened species.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental , Espécies em Perigo de Extinção , Aves , Mudança Climática , Biodiversidade
2.
Ecol Evol ; 13(6): e10150, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37304361

RESUMO

Ecological traps occur when species choose to settle in lower-quality habitats, even if this reduces their survival or productivity. This happens in situations of drastic environmental changes, resulting from anthropogenic pressures. In long term, this could mean the extinction of the species. We investigated the dynamics of occurrence and distribution of three canid species (Atelocynus microtis, Cerdocyon thous, and Spheotos venaticus) considering human threats to their habitats in the Amazon Rainforest. We analyzed the environmental thresholds for the occurrence of these species and related to the future projections of climatic niches for each one. All three species will be negatively affected by climate change in the future, with losses of up to 91% of the suitable area of occurrence in the Brazilian Amazon. A. microtis appear to be more forest-dependent and must rely on the goodwill of decision-makers to be maintained in the future. For C. thous and S. venaticus, climatic variables and those associated with anthropogenic disturbances that modulate their niches today may not act the same way in the future. Even though C. thous is least dependent on the Amazon Forest; this species may be affected in the future due to the ecological traps. S. venaticus, can also undergo the same process, but perhaps more drastically due to the lower ecological plasticity of this species compared to C. thous. Our results suggest that the ecological traps may put these two species at risk in the future. Using the canid species as a model, we had the opportunity to investigate these ecological effects that can affect a large part of the Amazonian fauna in the current scenario. Considering the high degree of environmental degradation and deforestation in the Amazon Rainforest, the theory of ecological traps must be discussed at the same level as the habitat loss, considering the strategies for preserving the Amazon biodiversity.

3.
PeerJ ; 11: e14882, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874965

RESUMO

Background: Global shifts in climatic patterns have been recorded over the last decades. Such modifications mainly correspond to increased temperatures and rainfall regime changes, which are becoming more variable and extreme. Methods: We aimed to evaluate the impact of future changes in climatic patterns on the distribution of 19 endemic or threatened bird taxa of the Caatinga. We assessed whether current protected areas (PAs) are adequate and whether they will maintain their effectiveness in the future. Also, we identified climatically stable areas that might work as refugia for an array of species. Results: We observed that 84% and 87% of the bird species of Caatinga analyzed in this study will face high area losses in their predicted range distribution areas in future scenarios (RCP4.5 and RCP8.5, respectively). We also observed that the current PAs in Caatinga are ineffective in protecting these species in both present and future scenarios, even when considering all protection area categories. However, several suitable areas can still be allocated for conservation, where there are vegetation remnants and a high amount of species. Therefore, our study paves a path for conservation actions to mitigate current and future extinctions due to climate change by choosing more suitable protection areas.


Assuntos
Aves , Mudança Climática , Animais , Brasil , Ecossistema , Febre
4.
PeerJ ; 10: e13028, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35368330

RESUMO

The leading causes of the worldwide decline in biodiversity are global warming, allied with natural habitat loss and fragmentation. Here, we propose an analysis of the synergistic effects of these two factors in 63 species of Amazonian lizards. We predicted that the high-climatic suitability areas of species would be significantly impacted by different deforestation scenarios and the resultant landscape structure and considered that forest-dwelling species would be especially susceptible to deforestation scenarios. We also pointed out species threatened by both drivers and suggested critical areas for their future conservation. According to our results, most species will face future reductions in suitable areas for their occurrence according to five different patterns, two of which represent significant risks for 15 species. Some of these species already deal with severe habitat loss and fragmentation of their current distribution ranges, whereas others will suffer a considerable area reduction related to future range shifts. We emphasize the importance of protected areas (PAs), especially indigenous lands, and the need to plan combined strategies involving PAs' maintenance and possible implementation of ecological corridors. Finally, we highlight eight species of thermoconformer lizards that constitute present and future conservation concerns related to the combined effects of climate change and habitat loss and that should be carefully evaluated in extinction risk assessments.


Assuntos
Conservação dos Recursos Naturais , Lagartos , Animais , Ecossistema , Biodiversidade , Florestas
5.
Mol Phylogenet Evol ; 160: 107113, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33610648

RESUMO

We evaluated the role of Quaternary climatic fluctuations on the demographic history and population structure of amphibian species endemic to the 'campo rupestre' in the Neotropics, evaluating their distributional shifts, demographic changes, and lineage formation from the end of Pleistocene to present. We chose two anurans endemic to the high-elevation 'campo rupestre' in the Espinhaço Range (ER) in northeastern and southeastern Brazil (Bokermannohyla alvarengai and Bokermannohyla oxente), as models to test the role of Quaternary climatic fluctuations over their distribution range in this region. We collected tissue samples throughout their distribution range and used statistical phylogeography to examine processes of divergence and population demography. We generated spatial-temporal reconstructions using Bayesian inference in a coalescent framework in combination with hind-cast projections of species distribution models (SDMs). We also used the results and literature information to test alternative diversification scenarios via approximate Bayesian computation (ABC). Our results show that Quaternary climatic fluctuations influenced the geographic ranges of both species showing population expansion during the last glacial maximum (LGM) and range contraction during interglacial periods, as inferred from selected ABC models and from past projections of SDMs. We recovered Pleistocene diversification for both species occuring in distinctly unique periods for each taxon. An older and range-restricted lineage was recovered in a geographically isolated geological massif, deserving conservation and further taxonomic study. The diversification and distribution of these amphibian species endemic to the Neotropical 'campo rupestre' were influenced by Quaternary climatic fluctuations. The expansion of cold adapted species restricted to higher elevations during glacial periods and their concomitant retraction during interglacial periods may have been crucial for producing patterns of species richness and endemism along elevation gradients in tropical and subtropical domains. Such processes may influence the evolution of the biota distributed in heterogeneous landscapes with varied topography.


Assuntos
Anuros/classificação , Clima , Filogeografia , Animais , Teorema de Bayes , Filogenia
6.
PLoS One ; 15(10): e0238729, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33048933

RESUMO

The Amazonian and Atlantic Forest share several organisms that are currently isolated but were continuously distributed during the Quaternary period. As both biomes are under different climatic regimes, paleoclimatic events may have modulated species' niches due to a lack of gene flow and imposing divergent selection pressure. Here, we assessed patterns of ecological niche overlap in 37 species of birds with disjunct ranges between the Amazonian and Brazilian Atlantic Forests. We performed niche overlap analysis and ecological niche modeling using four machine-learning algorithms to evaluate whether species' ecological niches evolved or remained conserved after the past South American biogeographic events. We found a low niche overlap among the same species populations in the two biomes. However, niche similarity tests showed that, for half of the species, the overlap was higher than the ones generated by our null models. These results lead us to conclude that niche conservatism was not enough to avoid ecological differentiation among species even though detected in many species. In sum, our results support the role of climatic changes in late-Pleistocene-that isolated Amazon and the Atlantic Forest-as a driving force of ecological differences among the same species populations and potential mechanism of current diversification in both regions.


Assuntos
Evolução Biológica , Aves/classificação , Aves/genética , Ecossistema , Floresta Úmida , Animais , Biodiversidade , Brasil , Mudança Climática/história , Fluxo Gênico , Especiação Genética , História Antiga , Filogeografia , Dinâmica Populacional/história
7.
Biota Neotrop. (Online, Ed. ingl.) ; 20(2): e20190756, 2020. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1089121

RESUMO

Abstract: The multiple uses of aquatic ecosystems by humankind and the continuous interference of their activities have contributed to the emergence of potentially toxic cyanobacteria blooms. Here, we firstly created a database of occurrences of cyanobacteria blooms in Brazil through a systematic review of the scientific literature available in online platforms (e.g. Web of Science, Capes Thesis Catalogue). Secondly, we carried out ecological niche models with occurrence data obtained from these studies to predict climatically suitable areas for blooms. We select 21 bioclimatic variables input environmental data. We used five modeling methods for the current climate scenario: (1) Maxent; (2) Support Vector Machines; (3) Random Forest; (4) Maximum Likelihood e (5) Gaussian. We found that the number of publications about bloom events was higher in 2009 with a decline in the years 2012, 2013 and 2017. Furthermore, the years with the higher records of blooms in freshwater environments were 2005, 2011 e 2014. These events occurring mainly in public supply reservoirs and are mostly of the genera Microcystis Lemmermann, 1907, Dolichospermum (Ralfs ex Bornet & Flahault) P.Wacklin, L.Hoffmann & J.Komárek, 2009 and Raphidiopsis F.E.Fritsch & F.Rich, 1929. Modeling the potential distribution of blooms, we found sampling gaps that should be targeting for future researches, especially in the Amazon biome. Overall, the models did not predict highly suitable areas in the /north of Brazil, while other regions were relatively well distributed with a higher number of occurrence records in the Southeast region.


Resumo: Os múltiplos usos dos ecossistemas aquáticos pela humanidade e a contínua interferência das suas atividades têm contribuído para o surgimento de florações de cianobactérias potencialmente tóxicas. Aqui, primeiramente criamos um banco de dados de ocorrências de floração de cianobactérias no Brasil por meio de uma revisão sistemática da literatura científica disponível em plataformas on-line (por exemplo, Web of Science, Catálogo de Teses da Capes). Em segundo lugar, realizamos modelos de nicho ecológico com dados de ocorrência obtidos a partir desses estudos para prever áreas climaticamente adequadas para as florações. Selecionamos 21 variáveis bioclimáticas como dados ambientais de entrada. Usamos cinco métodos de modelagem diferentes para no cenário climático atual: (1) Maxent; (2) Support Vector Machines; (3) Random Forest; (4) Maximum Likelihood e (5) Gaussian. Encontramos que o número de publicações sobre eventos de floração foi maior em 2009 com um declínio nos anos de 2012, 2013 e 2017. Além disso, os anos com os registros mais altos de florescimento em ambientes de água doce foram 2005, 2011 e 2014. Esses eventos ocorrem principalmente em reservatórios de abastecimento público e são na sua maioria dos gêneros Microcystis Lemmermann, 1907, Dolichospermum (Ralfs ex Bornet & Flahault) P.Wacklin, L.Hoffmann & J.Komárek, 2009 e Raphidiopsis F.E.Fritsch & F.Rich, 1929. Modelando a distribuição potencial das florações, encontramos lacunas de amostragem que devem ser direcionadas para futuras pesquisas, especialmente no bioma Amazônia. Em geral, os modelos não previram áreas altamente adequadas no norte do Brasil, enquanto outras regiões estavam relativamente bem distribuídas com um número maior de registros de ocorrência na região Sudeste.

8.
Sci Rep ; 9(1): 6355, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015555

RESUMO

Traditional conservation techniques for mapping highly biodiverse areas assume there to be satisfactory knowledge about the geographic distribution of biodiversity. There are, however, large gaps in biological sampling and hence knowledge shortfalls. This problem is even more pronounced in the tropics. Indeed, the use of only a few taxonomic groups or environmental surrogates for modelling biodiversity is not viable in mega-diverse countries, such as Brazil. To overcome these limitations, we developed a comprehensive spatial model that includes phylogenetic information and other several biodiversity dimensions aimed at mapping areas with high relevance for biodiversity conservation. Our model applies a genetic algorithm tool for identifying the smallest possible region within a unique biota that contains the most number of species and phylogenetic diversity, as well as the highest endemicity and phylogenetic endemism. The model successfully pinpoints small highly biodiverse areas alongside regions with knowledge shortfalls where further sampling should be conducted. Our results suggest that conservation strategies should consider several taxonomic groups, the multiple dimensions of biodiversity, and associated sampling uncertainties.


Assuntos
Biodiversidade , Modelos Teóricos , Biota , Brasil , Conservação dos Recursos Naturais , Geografia
9.
Sci Rep, v. 9, 6355, abr. 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2736

RESUMO

Traditional conservation techniques for mapping highly biodiverse areas assume there to be satisfactory knowledge about the geographic distribution of biodiversity. There are, however, large gaps in biological sampling and hence knowledge shortfalls. This problem is even more pronounced in the tropics. Indeed, the use of only a few taxonomic groups or environmental surrogates for modelling biodiversity is not viable in mega-diverse countries, such as Brazil. To overcome these limitations, we developed a comprehensive spatial model that includes phylogenetic information and other several biodiversity dimensions aimed at mapping areas with high relevance for biodiversity conservation. Our model applies a genetic algorithm tool for identifying the smallest possible region within a unique biota that contains the most number of species and phylogenetic diversity, as well as the highest endemicity and phylogenetic endemism. The model successfully pinpoints small highly biodiverse areas alongside regions with knowledge shortfalls where further sampling should be conducted. Our results suggest that conservation strategies should consider several taxonomic groups, the multiple dimensions of biodiversity, and associated sampling uncertainties.

10.
Sci Rep ; 9: 6355, 2019.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15972

RESUMO

Traditional conservation techniques for mapping highly biodiverse areas assume there to be satisfactory knowledge about the geographic distribution of biodiversity. There are, however, large gaps in biological sampling and hence knowledge shortfalls. This problem is even more pronounced in the tropics. Indeed, the use of only a few taxonomic groups or environmental surrogates for modelling biodiversity is not viable in mega-diverse countries, such as Brazil. To overcome these limitations, we developed a comprehensive spatial model that includes phylogenetic information and other several biodiversity dimensions aimed at mapping areas with high relevance for biodiversity conservation. Our model applies a genetic algorithm tool for identifying the smallest possible region within a unique biota that contains the most number of species and phylogenetic diversity, as well as the highest endemicity and phylogenetic endemism. The model successfully pinpoints small highly biodiverse areas alongside regions with knowledge shortfalls where further sampling should be conducted. Our results suggest that conservation strategies should consider several taxonomic groups, the multiple dimensions of biodiversity, and associated sampling uncertainties.

12.
Sci Rep ; 7(1): 9141, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28831073

RESUMO

Although Brazil is a megadiverse country and thus a conservation priority, no study has yet quantified conservation gaps in the Brazilian protected areas (PAs) using extensive empirical data. Here, we evaluate the degree of biodiversity protection and knowledge within all the Brazilian PAs through a gap analysis of vertebrate, arthropod and angiosperm occurrences and phylogenetic data. Our results show that the knowledge on biodiversity in most Brazilian PAs remain scant as 71% of PAs have less than 0.01 species records per km2. Almost 55% of Brazilian species and about 40% of evolutionary lineages are not found in PAs, while most species have less than 30% of their geographic distribution within PAs. Moreover, the current PA network fails to protect the majority of endemic species. Most importantly, these results are similar for all taxonomic groups analysed here. The methods and results of our countrywide assessment are suggested to help design further inventories in order to map and secure the key biodiversity of the Brazilian PAs. In addition, our study illustrates the most common biodiversity knowledge shortfalls in the tropics.


Assuntos
Artrópodes/crescimento & desenvolvimento , Conservação dos Recursos Naturais/métodos , Magnoliopsida/crescimento & desenvolvimento , Vertebrados/crescimento & desenvolvimento , Animais , Artrópodes/classificação , Biodiversidade , Brasil , Espécies em Perigo de Extinção , Magnoliopsida/classificação , Filogenia , Vertebrados/classificação
13.
PLoS One ; 12(2): e0171838, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28187182

RESUMO

Knowledge of spatiotemporal distribution of biodiversity is still very incomplete in the tropics. This is one of the major problems preventing the assessment and effectiveness of conservation actions. Mega-diverse tropical regions are being exposed to fast and profound environmental changes, and the amount of resources available to describe the distribution of species is generally limited. Thus, the tropics is losing species at unprecedented rates, without a proper assessment of its biodiversity. Species distribution models (SDMs) can be used to fill such biogeographic gaps within a species' range and, when allied with systematic conservation planning (e.g. analyses of representativeness, gap analysis), help transcend such data shortage and support practical conservation actions. Within the Neotropics, eastern Amazon and northern Cerrado present a high variety of environments and are some of the most interesting ecotonal areas within South America, but are also among the most threatened biogeographic provinces in the world. Here, we test the effectiveness of the current system of Protected Areas (PAs), in protecting 24 threatened and endemic bird species using SDMs. We found that taxa with wider distributions are potentially as protected as taxa with smaller ranges, and larger PAs were more efficient than smaller PAs, while protecting these bird species. Nonetheless, Cerrado PAs are mostly misallocated. We suggest six priority areas for conservation of Neotropical birds. Finally, we highlight the importance of indigenous lands in the conservation of Neotropical biodiversity, and recommend the development of community management plans to conserve the biological resources of the region.


Assuntos
Aves/fisiologia , Espécies em Perigo de Extinção , Política Ambiental , Distribuição Animal , Animais , América do Sul , Clima Tropical
14.
Sci. Rep. ; 7(9141)2017.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15077

RESUMO

Although Brazil is a megadiverse country and thus a conservation priority, no study has yet quantified conservation gaps in the Brazilian protected areas (PAs) using extensive empirical data. Here, we evaluate the degree of biodiversity protection and knowledge within all the Brazilian PAs through a gap analysis of vertebrate, arthropod and angiosperm occurrences and phylogenetic data. Our results show that the knowledge on biodiversity in most Brazilian PAs remain scant as 71% of PAs have less than 0.01 species records per km(2). Almost 55% of Brazilian species and about 40% of evolutionary lineages are not found in PAs, while most species have less than 30% of their geographic distribution within PAs. Moreover, the current PA network fails to protect the majority of endemic species. Most importantly, these results are similar for all taxonomic groups analysed here. The methods and results of our countrywide assessment are suggested to help design further inventories in order to map and secure the key biodiversity of the Brazilian PAs. In addition, our study illustrates the most common biodiversity knowledge shortfalls in the tropics.

15.
Rev. bras. entomol ; 60(2): 166-170, Apr.-June 2016. tab, graf
Artigo em Inglês | LILACS | ID: lil-783869

RESUMO

ABSTRACT Despite its important effect on the maintenance of tritrophic interactions among plants, insect herbivores, and ants, there is still a paucity of natural history and basic biology information involving trophobiosis among Heteroptera stink bugs. Here, based on previous observations of a new trophobiotic interaction between Edessa rufomarginata (De Geer, 1773) and Camponotus rufipes (Fabricius, 1775) ants, we describe the chemical profile of the honeydew obtained by Gas Chromatography–Mass Spectrometry. There were mainly three different sugars (trehalose, glucose, and sorbose) within our samples. The extrafloral nectaries of Caryocar brasiliense Camb., the host plant of E. rufomarginata, attracts a wide assemblage of Cerrado ants with varying aggressiveness toward herbivores. Therefore, this facultative trophobiotic interaction may allow the survival of the stink bug while feeding on the risky, highly ant-visited plant. Given the rarity of trophobiotic interactions between Pentatomidae species and ants and considering a zoological perspective within this family, here we discuss the ecological and evolutionary routes that may allow the rise of these interactions.

16.
PLoS One ; 10(6): e0129890, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26069956

RESUMO

Orchid bees compose an exclusive Neotropical pollinators group, with bright body coloration. Several of those species build their own nests, while others are reported as nest cleptoparasites. Here, the objective was to evaluate whether the inclusion of a strong biotic interaction, such as the presence of a host species, improved the ability of species distribution models (SDMs) to predict the geographic range of the cleptoparasite species. The target species were Aglae caerulea and its host species Eulaema nigrita. Additionally, since A. caerulea is more frequently found in the Amazon rather than the Cerrado areas, a secondary objective was to evaluate whether this species is increasing or decreasing its distribution given South American past and current climatic conditions. SDMs methods (Maxent and Bioclim), in addition with current and past South American climatic conditions, as well as the occurrences for A. caerulea and E. nigrita were used to generate the distribution models. The distribution of A. caerulea was generated with and without the inclusion of the distribution of E. nigrita as a predictor variable. The results indicate A. caerulea was barely affected by past climatic conditions and the populations from the Cerrado savanna could be at least 21,000 years old (the last glacial maximum), as well as the Amazonian ones. On the other hand, in this study, the inclusion of the host-cleptoparasite interaction complex did not statistically improve the quality of the produced models, which means that the geographic range of this cleptoparasite species is mainly constrained by climate and not by the presence of the host species. Nonetheless, this could also be caused by unknown complexes of other Euglossini hosts with A. caerulea, which still are still needed to be described by science.


Assuntos
Distribuição Animal , Abelhas/fisiologia , Ecossistema , Interações Hospedeiro-Parasita , Orchidaceae/fisiologia , Animais , Abelhas/patogenicidade , Orchidaceae/parasitologia , Filogeografia
17.
Acta sci., Biol. sci ; 35(2): 219-231, abr.- jun. 2013. ilus
Artigo em Inglês | LILACS | ID: biblio-859536

RESUMO

The purpose of this study was to investigate the importance of present and historical climate as determinants of current species richness pattern of forestry trees in South America. The study predicted the distribution of 217 tree species using Maxent models, and calculated the potential species richness pattern, which was further deconstructed based on range sizes and modeled against current and historical climates predictors using Geographically Weighted Regressions (GWR) analyses. The current climate explains more of the wide-ranging species richness patterns than that of the narrow-ranging species, while the historical climate explained an equally small amount of variance for both narrow-and-wide ranging tree species richness patterns. The richness deconstruction based on range size revealed that the influences of current and historical climate hypotheses underlying patterns in South American tree species richness differ from those found in the Northern Hemisphere. Notably, the historical climate appears to be an important determinant of richness only in regions with marked climate changes and proved Pleistocenic refuges, while the current climate predicts the species richness across those Neotropical regions, with non-evident refuges in the Last Glacial Maximum. Thus, this study's analyses show that these climate hypotheses are complementary to explain the South American tree species richness.


O objetivo deste estudo foi testar qual dos climas, atual ou histórico, é o principal preditor do padrão atual de riqueza de espécies arbóreas de interesse comercial. Nós modelamos a distribuição de 217 espécies usando Maxent e usamos esses mapas preditivos para obter o padrão de riqueza de espécies. A riqueza foi desconstruída em relação ao tamanho da distribuição geográfica das espécies e modelada contra os climas atual e histórico utilizando Regressões Geograficamente Ponderadas. O clima atual explicou melhor o padrão de riqueza das espécies com ampla distribuição geográfica do que de espécies com distribuição restrita, enquanto o clima histórico explicou a mesma variância na riqueza dos dois grupos de espécies. Nossas análises com plantas sul americanas mostram diferentes relações da riqueza de espécies ampla e restritamente distribuídas com os climas atual e histórico, quando comparado aos resultados encontrados no hemisfério norte. O clima histórico se mostra como importante preditor da riqueza somente em regiões com mudanças climáticas acentuadas e onde ocorreram refúgios Pleistocênicos, enquanto o clima atual é o melhor da riqueza nas regiões Neotropicais sem evidências de refúgios durante o máximo da ultima glaciação. Dessa maneira, nossos resultados indicam que essas hipóteses são complementares para explicar a riqueza predita de espécies arbóreas da América do Sul.


Assuntos
Mudança Climática , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...